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The problem of the reflection of a cylindrical shock wave in water 
from the free surface is analyzed within the framework of shortwave 
theory [1, 2]. The motion is studied essentially on the basis of results 
obtained in [2-4]. 

1, Let a shock wave be generated by an explosion of an infinite 
cylindrical charge, per unit length of which a certain energy, char- 
acterized by the linear dimension R0 (the charge radius), is released. 
The axis of the charge is parallel to the free surface at a certain 
depth h. We align the axis of the cylindrical system of coordinates 
r, 0 with the charge axis. The angle 0 will be laid off from a plane 
parallel to the free surface. The flow behind the shock wave front will 
be determined on the basis of the system of "shortwave" equations 
[L 2] 
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The quantities p, v, y, 5 are defined by the equalities 
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where a0 is the initial speed of sound; U and V are the projections of 
the particle velocity vector on the direction of radius vector, and on 
the direction normal to it, respectively; M0 is a certain small quan- 
tity; and R is a distance expressed in terms of the charge radius R0. 

From (1.1) it is possible to obtain the flow which forms behind the 
shock wave front in an unbounded fluid, in which case v = 0, i . e . ,  
the flow is one dimensional [2]. We get 

6 = 2t* + e - ' r  (~%'), (1.2) 

where r is an arbitrary function. In the following, we asaume that the 
pressure profile behind the shook front is triangular; then 

6 = 2p, + Ce -'~ . (1.3) 

The position of the shook front is defined by the equation 

06 1 , I [ 06 "~ 2 
(1.4) 

In the one-dimensional case, from (1.4) and (1.3), at the shock 

front, we get 

1~ = Ae -3"~/4, 6 = 2Ae  -3"r + Ce-': (A, C = const). (1.5) 

From (1.5) and (1. Z), there follows Landau's [5] asymptotic 

formula 

P = k R - V ,  (k = eonst ) .  ( 1 . 6 )  

g. After the shock wave reaches the free surface, the rarefaction 
waves which propagate from the points of the free surface through 
which the shock front has passed interact with the flow (1.3). In the 
determination of the flow in the interaction region (which we term 
the disturbed flow), it is convenient to place the origin O of the system 

of coordinates on the free surface, at the point Ot of intersection 
with the normal to the center of the charge (figure 1). The transforma- 
tion formulas from p, v, y, 6 to Pt, vl, yt ,  5t in the new system of 

coordinates have the form 

8 = ~ T +  ylyoe-~,  v x = v - -  ]Xyo e-~, 

Yt'= Y + Yo e-* ,  ~q = I z 

Yo 17o Vh/2  (n + 1) Mo " (2.1) 
E 

We perform the following change of variables and functions: 

~iX = [ 6~ @ ~0('~)] e-'l'v' Yl "~- Y ~ 

Iq = [~ t~ + ~to(X)] e-'/*~ , vl = (~o + 2yO dlXo)e-.V,*" (2.2) 
dx 

Here, 500" ) and t10 ( r )  are unknown functions of time, 6oe - r / z  

is the value of 6t at point A of intersection of shock wave front and 
free surface, and /a0 e 'T /z  is the value of Pt and at this point. After 

performing transformations (2.2), Eqs. (1.1) take the form 

O'~ " \ It~ @ !'% - -  2 dT j 06 ~ 

t 0& ~ I 0 v  ~ 81~ ~ Ov ~ 
-i-~ y~ 0-5-f + =-2 0-p/o = 0, -ovo o~o 

+ 

- - - - 0 ~  (2.3) 

3. The reflection of a shock wave from the free surface can in- 
volve regular and irregular reflections [3]. An irregular reflection 
starts from the instant the rarefaction waves propagating from the free 
surface catch up with the shock front. Assume that this instant is 
reached at a distance R = R. or correspondingly, r = r . .  At the shock 

wave front, we set 

po(Z,) + ~t~ = i .  
(3.  i )  

The value of yo and M0 can be expressed through T. [4], 

y o = e  ~'=*, 3 I o = @ n  e -'&%. (3.2) 

Formulas (1.1), (2.1). (J.. 6) are used in the derivation of (3.2). 
In the new system of coordinates, Eqs. (1.8) and (1.5) take the 

form 

6 ~ = 2(l~to + tx ~ -- 112x-8 + y ~  -1 - -  6o(x) , (3.3) 

6~ + 6o = 2z-'A _ ~,. ~x-Z 2-, ,~'~ -3/2-w,2x -3 

(I z~ + ~o = x-'/2, x = e'A':-~.). (3.4) 

The perturbed-flow region contacts flow (3.3) along the charac- 
teristic surface of Eqs. (2.3) (BD in Fig. l).  The equation of the 

characteristic surface of Eqs. (2.3) has the form 

06 ~ ( ] I . dSo~ 
O~ "+ I x ~ 1 7 6  6~ - -  "=T 6~ - -  - ~ - }  - -  

Of ~ I / 06 ~  
~ y~ + 7 i,o,-7-) =o.  (3.5) 

By integrating (3.5), under the condition that the required sur- 
face extend along (3.3) and that it pass through point A at time r = r , ,  
we get 

6 ~ = qo (T)y ~ + X, v (~)yO + X0 ~ (x), (3.6) 
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Fig. 1 

qo = - -  ' / ,  (z - -  I)-L Xfl = - -  V~z-~( z - -  1), 

ZJ  = - -  Vaz-3 + ~hz-2 - -  ' / ,x - '  + ~h - ~o(*). (3.7) 

The point of  intersection B (Fig. 1) of the characteristic surface 
BD and the shock front separates the segment of the front AB which is 
distorted by the influence of the free surface from the undistorted 
portion of the shock front. The coordinates of this point are determined 
from (3.4) and (3.6),  

yB ~ = -- x-%(x ~ t) + 

+ [z-~(z ~ -- 1) -- 4(x -- t)(2z -'/~ + ~/~ x-~ -- %)1' ~, 

6B ~ = qoYB ~  XffYB ~ ~. (3.8) 

In this way, the solution is sought in  a region bounded by the free 
surface, the segment of the shock front AB and the characteristic 
surface BD. Near the point of intersection (A) of the shock front and 
the free surface, there occurs a Prandtl Meyer type flow [3], i . e . ,  
for y0 ..~ 0, 6 --,- 0, 

~ ~  +r~o(r) ,  v ~  3 \ y O /  + v o ( r ) .  (3.9) 

Formulas (3.9) are the boundary conditions at the free surface. At 
the shock front, whose equation in 6 ~ yO r coordinates is of the form 

6o + 6 ~ 06 ~ d60 1 o 06 ~ 
2 +--~-+--~+--~-~ v -g~=  

-7- (~o + ~*) + - 7  \ oy o ] ,  (3.10) 

i t  is necessary to fulfill the condition for the continuity of the velocity 
vector component tangential  to the shock front 

06 ~ 
(Ix~ +/Xo) O.-~ + v~ = 0. (3.11) 

For irregular reflection, at point A, the angle of  incidence of  the 
shock wave ~x (i. e . ,  the angle formed by the shock front and the 
normal to the free surface) always retains its cri t ical  value [3, 4], i . e . ,  

( n + l  p ' ~ %  o f n + t  Mo)'Ae_V,~, 
~=t  ,7 ~ )  =~, t - - - ~  

(3. ~2) 
where p '  is the pressure at the  shock front at point A. From here, in 
50, y 0  r coordinates, we get  

06 o 
[ = V ~ - ~  (3.13) O 

and, consequently, 

d6o + 1 
P.o = " - ~  - ~  6o. (3.14) 

At the characterist ic surface ED, the flow to be determined must 

contact (3.3). 
4. In order to determine the flow in region ABD, we use the exact 

part icular solutions of system (2.3),  obtained in [4]: 

~o = %yo~ + ~xyO + %,  

v o = ,3y  ~ + *2y ~ + e ly  ~ ~- ~0 o , 

6~ = qY~ + ElY ~ -[- Xo, Tv = -- X/~qZ _}_ '/2q + z(x) , 

*a = --z/a[%~. + %q ( (P~--q+ 2q z) + ' / ~  %-- 2%q], 

$ 2 = - - % ~ - -  %q ( % - - q + 2 q  ~) + X~%+%q--~/4  % ,  

$~ = -- 2q~o= -- 2 ~Poq(% - -  q +  2 q~) + %Xx, 

~0 = qOlXOq -- Xl~Oq, 
ql q 

X , = S ( l w d q ) d q ,  Z o = I  vdq, 

--oo --oo .--oo 

(4.i) 

The functions w and v are determined from the equations 

w.. + wqPI2q 2 - -  'l~q 4- z)+ w(Sq - -  s/,) = 0 ,  

Vz + Vq(3/~q 2 - -  1/~q + Z) + v(4q - -  1/2 ) - -  XlXlq  = 0.  (4.2) 

Solutions (4.1) satisfy (3.9) for any finite values of zff),  v(q,r) ,  and,  
w(q, ~'!. We select these functions from the condition for the flow (4.1) 
to contact flow (3.3) at characterist ic surface BD, at which q = q0(r). 

We write (3.3) in the following way: 

~~ = '/2 qyO2 "4- %v yo "4- (po v, 6o = qyO9 + Xl~yO + Xo v, (4.3) 
v = - -  (IX ~ "[- ~to)X-']" "-[- 2~o'e V':* 

% ~ = --  V4z-"~(z + t), 

~Po ~' = '/sx ''e + x/sx~ + l a x - ' +  '/s - -  ~o(r) �9 (4.4) 

In order that (4.1) convert to (4.3) at characteristic curve BD 
the functions must satisfy the following conditions: 

%(qo,'O = X/~qo, z(~) = ~hqJ, 
Xt(qo, x) = Xl v, Xo(qo, x) = ~o v , (4.5) 

%(qo, ~) = %~, %(qo, x) = %~, 

~o(qo~) = - -  (~o ~ + ~o)z -'!' , 

�9 z(qo,X) = 2~0" -- % ' z  - '/ ' ,  

�9 ,(qo,'O = --  V~qoz-'l', *s(q,, '0 = O. (4, 6) 

Fulfil lment of (4.5) means also the fulfil lment of (4.6). In this 
way, the problem reduces to the integration of the two equat iom 
(4. 2) for condition (4.5). The general  solution of these equations 
has the form 

w = FlO1)x%o%((o --  3q)'%, 

l, = zo~%((o -- 3,0 % X 

X [(o 4 -{- 8q (oa __ 26~i~co ~ __ 168 TI3(O + Fd 'Ol ,  

t + 1 2 ( x - - t ) q "  Y x ' (4, ' / )  

where F1 and F2 are arbitrary functions. From condition (4.7), we have 

Z (T) = - -  1/2 q0 2, q9.2 (q, T) = - -  1/2 q2 .~- 1/~ q ~_ 1/2 qo 2 ' 
qe qo 

1 
I ( i wflq) d q = x l ( q ~  r ) = - - ~ 2 - x - % ( x - - l ) "  (4.8) 

From here we find 

Ft -- - -  280,1, 
q q 

(o) + 2~]) 

- ~  -oo 

(r - -  1) (2q + o) (c0 " 
r 4x % o, A -- 3q) ~' + 

+ (n + (o) (q - 2(o) (~ _ 3q)", 

4x % (OVa 
(4.9) 
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For determining F2, we have 

q~ 0 

X,v (t) = v d q = ~ e ~ 1 6 2  f2(~l)(O~--3rl)%drl,(4.10) 

or, after simple transformations 

i B ('q) (o3 --  3"q)%dtl : 2~ -'/" [I/4 to ~ - -  1/4 to 4 Jr- 2o) ~" --  60 (r)], 

B (~) = F., -I- 154'r/o t14. (4.11) 

5. After substitution of (3.14), the equation for the shock wave 
front has the form 

t o6 o t o~o I i / o~o ~ 
W I ~ ~ 1 7 6  o y  ~ 2 I ~ ~  ~ ~ : o ,  (5.:!.) 

where the function ~0 (T) is determined from the condition at the front, 
at the point y0 = 0 

~f0, t )  = 0. (~. 9) 

This function can be determined numerically in the same manner 
that a similar function was determined in [4]. If  the function 60(r)i 
related to #0 ( r )  by relation (8.14), is approximated within the range 
r0 < r < Tt by a polynomial, i. e . ,  if one sets 

~0 = a 0  "~- al(O "~-a2012~ - '~176 

then the functions r T) and X 0(q, r ) will be expressed by finite 
formulas which contain the unknown coefficients a k. These coefficients 

must be determined in such a way that condition (5.2) is satisfied with 
the greatest possible accuracy within the given range. 

6(o, t )  = O. 

Because of their bulkiness, the formulas for r (q,r)  and • (q, T) 
are not presented. 

The solution obtained satisfies all the boundary eonditiom of the 
problem, except the condition for the continuity of the velocity 
vector component tangential to the shock front (3.11). Within the 
class of particular solutions (4.1), this condition can be satisfied 
only approximately. 
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